- Why ScienceLogic
- Main Menu
- Why ScienceLogic
Why ScienceLogic
See why our AI Platform fuels innovation for top-tier organizations.
- Why ScienceLogic
- Customer Enablement
- Trust Center
- Technology Partners
- Pricing
- Contact Us
- Product ToursSee ScienceLogic in actionTake a Tour
Experience the platform and use cases first-hand.
- Platform
- Main Menu
- Platform
Platform
Simplified. Modular-based. Efficient. AI-Enabled.
- Platform Modules
- Core Technologies
- Platform Overview
- Virtual ExperienceSkylar AI RoadmapRegister Today
Learn about our game-changing AI innovations! Join this virtual experience with our CEO, Dave Link and our Chief Product Officer, Mike Nappi.
November 26
- Solutions
- Main Menu
- Solutions
Solutions
From automating workflows to reducing MTTR, there's a solution for your use case.
- By Industry
- By Use Case
- By Initiative
- Explore All Solutions
- Survey ResultsThe Future of AI in IT OperationsGet the Results
What’s holding organizations back from implementing automation and AI in their IT operations?
- Learn
- Main Menu
- Learn
Learn
Catalyze and automate essential operations throughout the organization with these insights.
- Blog
- Community
- Resources
- Events
- Podcasts
- Platform Tours
- Customer Success Stories
- Training & Certification
- Explore All Resources
- 157% Return on InvestmentForrester TEI ReportRead the Report
Forrester examined four enterprises running large, complex IT estates to see the results of an investment in ScienceLogic’s SL1 AIOps platform.
- Company
- Main Menu
- Company
Company
We’re on a mission to make your IT team’s lives easier and your customers happier.
- About Us
- Careers
- Newsroom
- Leadership
- Contact Us
- Virtual Event2024 Innovators Awards SpotlightRegister Now
Save your seat for our upcoming PowerHour session on November 20th.
News Roundup, March 25: What’s Happening in AIOps, ITOps, and IT Monitoring
On this day in 1954, RCA manufactured its first color TV set and began mass production to bring the CT-100 to market where people could buy the invention with a 15-inch screen for $1000 ($7850 today). So, download your favorite TV show on your smartphone and check out the latest on AIOps, ITOps, and IT infrastructure monitoring.
1. There are four steps IT leaders can take now to get AI out of ‘pilot purgatory.’
An article in VentureBeat shows the framework for organizations to get AI from a concept developed with perfect conditions to a practical tool that can make any business better by learning by using real-world data to deliver faster and better results.
The global AI race is accelerating, and if we do not invest now in ways to scale AI more effectively, we risk falling behind. That is why now is the time to get AI out of “pilot purgatory” and into practical implementation. The article goes on to explain the role of AIOps in scaling AI by developing a framework that includes mission engineering, data operations, and reliability engineering.
The four steps that will yield success and scalability for an AIOps framework are:
- Establish your AI vision.
- Begin to articulate AI’s potential impact.
- Identify your AI champions.
- Capitalize on quick wins.
By strategically leveraging AIOps through a comprehensive, proven framework, IT leaders can close the chasm between conceptual innovation and real-world deployment, helping the U.S. stay ahead in the global race for AI supremacy.
2. Brush up on the top 10 tech buzzwords for IT operations teams in 2022.
This article in ITProToday listed and explained the most important terms that are expected to be essential this year. By familiarizing yourself with these terms you will be in-the-know of what the experts are talking about.
Here are 10 that are buzzing around right now:
- Everything as code
- Multi-cluster
- NoOps
- AIOps
- Chaos Engineering
- Site reliability engineering
- Software supply chain
- Least privilege
- Zero trust
- Microsegmentation
3. AIOps combines machine learning and automation to transform IT operations.
AIOps has been proven to provide greater efficiencies with reduced operational costs for cloud-based companies. This article in CIO explains how AIOps makes organizations better.
A healthy IT organization can provide key competitive advantages for businesses in a fast-paced market. Many companies struggle to meet the high demand due to increased cloud system complexity. Distributed apps (where distinct parts of an app run on different systems) make it difficult to track where problems occur during an IT incident. Every minute of downtime or app failure directly impacts revenues.
To mitigate these failures, IT organizations have ballooned in size. Increased cloud investments demand people that can do everything: build efficient systems, scale them to millions of users, and plug holes that lead to downtime.
AIOps practices save companies time and money. ITOps teams can spend time building scalable systems, rather than chasing down noisy alerts and doing redundant tasks. Cloud systems gain efficiency thanks to reduced app downtime. AIOps platforms predict potential IT incidents and resolve them without human intervention.
4. Discover the difference between DevOps, MLOps and DataOps.
An article in DevOps.com breaks down the differences and significance of the three distinct disciplines of DevOps, MLOps and DataOps.
Soon, almost every piece of software we interact with will have intelligence built-in, and as AI gains acceptance and new use cases are rolled out, applications will only continue to become more intelligent.
But innovation is rarely easy or simple—and intelligent applications are no exception. While conventional software involves one thing—code—and not much else, intelligent software relies on a complex relationship between three interconnected variables or legs of a three-legged stool.
The components of this stool are model, data, and code. If you try to remove any one of them, the application will topple over.
With the three distinct pillars that make up intelligent applications, three distinct disciplines have emerged to keep each individual pillar functioning as efficiently as possible: DataOps, MLOps, and DevOps.
Each of these fields is distinct, dealing with a separate set of questions and objectives within the ML life cycle and requiring diverse kinds of people and tools. However, they are all fundamentally united by a common goal: Optimizing quality and speed of iteration of the ML life cycle.
Just getting started with AIOps and want to learn more? Read the eBook “Your Guide to Getting Started with AIOps»